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Abstrad. We describe results of the cluster algorithm speeiol p u ' p o . ~ ~  processor simulations 
of the 20 king model with impurity bonds. We use large lattices with up to  lo6 spins to define 
critical temperature regions where both finite-size corrections and corrections to scaling are 
small. High-accuracy data unambiguously show an increase in the magnetization and magnetic 
susceptibility effective exponents f l  and y ,  caused by impurities. The M- and ,y-singularities 
become sharper, while the specific heat singularity is smoothed. 

1. Introduction 

The problem of the influence of inhomogenities on phase transitions has a long history. 
The first model with some kind of impurity to be studied is, due to its simplicity. the king 
model. The effect of randomness on the critical behaviour of different Ising models has been 
investigated by Harris [l]. He found that if the specific heat of the.pure system diverges 
as some power of (T, - T)- ' ,  then the critical behaviour will be changed by impurities. 
Such a result does not give any information for the 2D Ising model, which has a logarithmic 
divergence of the specific heat. 

Theoretical treatment of the 2D Ising model with ferromagnetic impurity bonds was 
pioneered by Dotsenko and Dotsenko (DD) [Z-61. They predicted new critical behaviour 
of the specific heat [2, 31, spin-spin correlation function, magnetization and magnetic 
susceptibility 14, 51. Later the same model was considered in a number of theoretical 
studies [7-151. Some authors claimed the specific heat should be finite for all temperatures 
[14, 131. Others [7-121 (SSL) confirmed the DD result for the specific heat but stated the 
critical behaviour of spin-spin correlation function and magnetization to be the same, or 
almost the same, as in the pure case, only slightly changed by logarithmic corrections. 

Experiments on quasi-m compounds with almost king spins [16-201 did not show 
any deviations from Onsager results, probably because of the insufficient accuracy caused 
by large-scale inhomogeneities which smooth out the phase transition. Moreover, in such 
experiments it is not possible to exclude 3D effects. Hence, to understand whether any of 
the theories contain essential physics, it is necessary to perform computer simulations. 

Early Monte Carlo simulations [Zl. 221 demonstrated the same critical behaviour as in 
the pure case. 

The large-scale simulations were started by Andreichenko et al [23-251. The specific 
heat at the critical point of the model with impurities C(T,) was studied as a function of 
the system size L [24, 251. For large impurity strengths the specific heat C(TJ was found 
to be proportional to loglog(L), which seems to be in agreement with the DD prediction. 
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The behaviours of the magnetization M(T,) and magnetic susceptibility x(T,) as 
functions of L turned out [24, 2.51 to be the same as in the pure case, which contradicted 
the DD theory. 

Usually, critical behaviour is studied as a function of relative temperature distance 
r = (Tc - T)/T, from T,. Some deviations from the pure behaviour of M ( r )  and x ( r )  
were found by Wang etal [25], and in specialpurpose processor (SPP) simulations [26, 271. 
The accuracy of [25-271 was not, however very high, and the critical region was not defined. 

The new SPP simulation [28, 291, using the cluster Wolff algorithm, allows a very 
accurate description of the 2D random Ising model critical behaviour. It gives us not 
only the thermodynamic quantities, but also the spin-spin correlation function [29, 301: 
CF(r) = (S(O)S(r)) which has been directly studied theoretically [4-12.1. 

2. The model 

We study the same system as was considered earlier 123-271. Ising spins are located at 
the nodes of a two-dimensional square lattice. To avoid the appearance of border-induced 
terms, we use periodic boundary conditions in both directions. 

Disorder is introduced via random~distribution of impurity coupling constants over lattice 
bonds. The pure case exchange interaction constant is denoted by J ,  and the impurity 
coupling constant by J' .  The probability of finding J' on some bond is p ,  

and the probability of finding J is (1 - p ) .  In this paper we do not consider spin glasses, 
so both J and J' are ferromagnetic. 

What can be said about the phase diagram of such a model? At p = 0 there is the 
Onsager phase transition at (1,'TJ x 0.44068, if the pure coupling constant J is chosen 
to he equal to 1. The shift of T, due to impurities for small p was calculated exactly in 
[I, 311 for J' = 0, and in [3] for the general case. 

Certainly, impurities destroy thermal fluctuations and decrease Tc. If there are enough 
strong impurities, then the phase transition disappears. Indeed, if J' = 0, and p > 0.5, then 
there is no percolation of bound spins in the system [32]. The lattice is broken into finite 
islands of interacting spins, and in a finite system there can be no phase transition. 

Fortunately, for p = 0.5 and J' > 0 there exists an exact duality relation [33, 341, 
which gives the value of Tc as a function of J and J': 

In [23,25] it was checked that the position of the specific heat maximum does indeed tend 
to this Tc in the limit L 00. This confirms that there is only one phase transition point 
in the system. 

In their theory of the impure king model, DD 161 introduced a small parameter g, which 
becomes zero if either p = 0 or J = J'. They also defined the impurity-induced length li 
as log&) o( l jg  . The influence of impurities should be important only on distances larger 
than li. If the disorder is small (g < 1) then for the finite lattice with linear size L, it may 
happen that li >> L. In this case it is impossible to observe the influence of impurities on 
the critical behaviour. 

For this reason, we must choose g as large as possible to decrease l j ,  in order to study the 
deviations caused by inhomogeneities. So, in real Mc simulations g cannot be very small, 
and the exact theoretical formula for g given by DD [6] is no longer valid. Nevertheless, as 
we show later, the DD formula for the specific heat 

W') (1 /d  + g log(l/r)) (2) 
(where g is regarded just as a parameter) describes the simulation data reasonably well . 

tanh(JjT,) =exp(-2J'/TC) . (1) 
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3. Simulation procedure 

We used the first cluster algorithm SPP [28, 291 for the simulations. It implements in 
hardware a very efficient cluster Wolff algorithm [35-371, which is an improved version of 
the Swendsen-Wang algorithm [38]. The Wolff algorithm does not slow down so badly at 
the critical point, where it should be about L2 times faster than the conventional spin-flip 
algorithm. In the case of our SPP L can be as large as 1024. Thus, the improvement in 
speed is about one million times. A detailed description of the SPP structure and functioning 
can be found in [29]. The class of problems which can be solved by the SPP, is described 
in [28, 291. 

The precise meaning of the absence of the critical slowing down was found in the 
simulations of the pure case j291: the relaxation time, measured in  real simulation time, is 
the same at the critical point as it is far from it. 

The relaxation time is defined in the following way: we start simulation with all 
spins pointing in one direction. After some time all the thermodynamic values, such as 
magnetization or the lattice energy, come into the zone of thermal fluctuations near thermal 
equilibrium. We call this time the relaxation time. 

For the pure case it is necessary to flip about 20 Wolff clusters to get to the fluctuation 
region near T,, and about 5 Wolff clusters far from T, for L = 1024 [29]. On the other 
hand, the mean number of spins in the cluster far from the critical point is almost equal to 
the total number of~spins Lz,  and near Tc the number of spins in the cluster is about four 
times lower. So the relaxation time, measured as the actual computer processing time, is 
the same. 

The situation in the disordered system can be seen on figures 1 and 2. All results are 
given for the case where J = 1, J‘ = 0.25, p = 0.5. According to (1) this corresponds to 
( l /Tc )  = 0.807051 86. 

Figure 1 shows the relaxation of the magnetization and the correlation function CF(L/~) 
near Tc, for ( l / T c )  = 0.808. We see that again, as in the pure case, 20 clusters should be 
flipped to enter the thermal fluctuation zone near T,. As can be seen from figure 1, there is 
some correlation between M and CF(LI2). Indeed, there are two ways to define M. First, 
we can count the difference in the number of up (A$) and down (A’&) spins in the system; 
then the magnetization is given by 

MI = (A’? - NI)/(NT + NJ) .  
The second definition of M is usually used obtained by finding it theoretically for the infinite 
system: 

M = ((s(o)s(oo)))”~. 
In the finite system we can alternatively define M as 

Our simulations show that M I  and Mz, averaged over impurity dishibution, normally lead 
to the same mean values of magnetization. Noticeable differences between them appear 
only very close to T,, when the finitelattice size effects come into play. Nevertheless, the 
correlation between M and CF(LI2)  persists up to T,, as can be seen from figure 1. 

The relaxation time is about 20 clusters not only for M, but also for other thermodynamic 
quantities. This can be seen in figure 2, which describes the relaxation of the neighbour 
spins correlation function ~ ( 1 ) .  In the pure case cF(1) coincides with the energy per bond. 
Now it does not, because the energy is given by 

Mz = (CF(L/2))1’2. 

(Joi s(O)W)) 
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Figure 1. Time relamion of the magnetization M (solid lirangles) and of the correlation function 
ff(L/2) (empty triangles) as a function of a number Nc of Ripped Wolff clusters. Broken lines 
show mean values. obtained for a large number of flipped clusters for the linear lattice size 
L = 1024. Temperature T is very close 10 T,. 

Nc 

and there are some correlations between the value of the coupling constant Jol on the bond 
connecting two neighbour nodes 0 and 1, and the sign of the two-spin product. Nevertheless, 
the relaxation curve for the energy, also shown in figure 2, behaves very much like relaxation 

Fluctuations of the magnetization, shown in figure 1, are very large, as should be the 
fluctuations of the order parameter near the critical point. On the other hand, the energy, 
which is not the order parameter, does not fluctuate so strongly. Because the relaxation time 
near Tc in the impure case is the same as in the pure case, we again come to the conclusion 
that the critical slowing down is absent. Nevertheless, to obtain the thermodynamic data 
described below, we permitted the spins of each sample to relax during the first 2000 cluster 
flips. Only after that were measurements for each sample started. 

Each sample has its own distribution of impurity bonds. Coupling strengths J = 1 and 
J’ = 0.25 were assigned to each bond with a probability one half to obey the self-duality 
condition. It is the difference between different samples which determines the value of 
standard errors for all the thermodynamic data. 

We use three sets of data: low-accuracy data (obtained with 10 samples) describe 
the large r-region: better data, obtained with 100 samples, give a general picture for a11 
temperatures; finally, very accurate 1000-sample data were obtained in the critical region, 
where the asymptotics can be defined. 

The importance of the proper determination of the critical region can be seen from 
figures 3 and 4, in which we show the reduced magnetization and magnetic susceptibility 
for the pure case, L = 1024 [29]. In the pure case the critical behaviour is described by 
the power laws 

curve for CF(1). 

MO = 1.22241 ( T ) ” ~  (3) 
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Figure 2. Time relaxation of the neighbour Spin-spin correlation function CF(I) and of the 
energy per bond (inset). Broken lines have the same meaning as in figure 1. 

Figure 3. The ratio of the magnetization M. obrained by the cluster SPP simulation (29J for the 
pure lsing model, L = IOU, to the asymptotic law Mo(r) .  
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F i w  4. The ratio of the magnetic susceptibility x. obtained by the cluster SPP simulation [291 
for the pure king model. L = 1024, to the asymptotic law x,)(r’). 

xo = (0.025537 - 0.001989~’) (T‘)”’~/T (4) 

where t’ = (T, - T ) / T  1391. Figures 3 and 4 show ratios of the pure case [29] M and x 
to the values obtained from asymptotic laws. It is clear that the critical region, in which 
the asymptotics are valid, is not very wide: 

0.001 c t c 0.02. (5 )  

5 < (l/L) . (6) 

Low-t restriction arises from finite-lattice effects, which become important for 

On the other hand, we know the exact solution for the magnetization of the infinite system: 

M, = (1 - l/sinh4(2/T))”*. 

This solution is correct at large t, and shows that there should be analytic corrections to 
the simple scaling law (3). These corrections to scaling lead to the large-s limit in (5).  

4. Results 

In the impure case the asymptotics (3), (4) are no longer valid. Nevertheless, deviations 
from them are not very large. To see these deviations more clearly, it is convenient to again 
divide M and x by MO and xo. The~corresponding ratios are shown as a function of t in 
figures 5 and 6. From these figures it is obvious that the critical behaviour is changed, and 
can be described by larger effective exponents than in the pure case. It is also obvious that 
the critical region for the impure case is somewhere within the range 

(7) 0.003 < T < 0.03 . 
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Figure S. The ratio of the random-bond Isid model magnetization to the pure case asymptotic 
law Mo(r ) .  Down triangles show IOsample data: up triangles show 100-sample data. 
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Figure 6. The ratio of the random-bond Ising model magnetic susceptibility to the pure case 
asymptotic law a;(r'). Down triangles show I0-sample dara; up triangles show 100-sample 
data. 
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To check once more that the small-r behaviour is determined by the finite-lattice size, we 
show the change of this behaviour with L in figures 7 and 8. From figure 8 we see that the 
maximum of x is shifted from r = 0.003 for L = 1024 to r = 0.006 for L = 512, as can 
be expected. It is natural to investigate the critical region (7) more carefully. The M -  and 
X-results obtained in this region using 1000 samples for L = 1024 are shown in figures 
9, 10. Figure 9 shows the ratio of magnetization to (3), additionally divided by r f ,  for 
E = 0.009. 0.0075, 0.006. We see that the effective exponent of M in the critical region is 
increased by 0.0075 from the pure Ising value 0.125. Figure 10 shows the analogous data 
for the magnetic susceptibility x .  In this case E = -0.11, -0.135, -0.17. This implies 
that the effective critical exponent for x is 1.75 f 0.135. These results for M ( r )  and ~ ( r )  
definitely contradict DD [4, 51 theory. 

The competing SSL theory claims that the magnetization and magnetic susceptibiiity 
retain a pure Ising dependence on the correlation length t(r): 

where c(r)  is given by the DD [2] expression 

A L Talapov and L N Shchur 

MssL(r) a e-'/* x d r )  a t714 (8) 

In the absence of analytic corrections to the asymptotic laws (8), (9), our simulation 
data are incompatible with these laws for any value of g. On the other hand, the data agree 
with the following expressions: 

M a (1 +aMt)MssL x o( (1 faxr)MssL (10) 
with properly chosen coefficients aM and a,. These coefficients describe analytic corrections 
to the scaling laws, the importance of which was stressed in [U]. The value of g which 
should be used in (8) ,  (9) agrees with the value of g found from the specific heat (C(r)) 
data, and with results given in [U]. 

The specific heat C ( r )  is more difficult to study than the magnetization for two reasons. 
(1) The specific heat is obtained as fluctuations of the energy according to the formula 

c = ( ( E  - (E))2) /T2  
As a result, fluctuations of C(r )  for a given r do not decrease with increasing lattice size 
L like the fluctuations of M. In reality, standard deviations of C(r )  depend only on r and 
the number of flipped clusters, which was used to measure C(r), but not on L. 

(2) The specific heat r-dependence is complicated. This creates difficulties in defining 
the critical region. 

Figure 11 describes the general behaviour of the specific heat in both pure and impure 
cases as a function of 5 .  We see that impurities reduce C(r )  and cause deviations from 
the simple log(r) asymptotic behaviour. It is convenient to study the difference between 
C(r)  and its supposed asymptotics. The number of samples is equal to 100 in both cases. 
Only the r-dependence or r-independence of y is important, so all the differences in figures 
11-14 are displaced by arbitrary constants. 

The pure case asymptotic of C(r)  per node for r + 0 is 

C r ( t )  = 0.4945 log(l/t) (11) 
plus some constant. Analytic 'corrections to scaling' can be made visible, if we draw the 
difference, ypun(r), between the exact solution for the infinite lattice Cz;E,(r) and (11). 
This difference 

ypUre(5) Cz!Et(t) - 0.4945 log(l/r) f 0.6 (12) 
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L = 512 data; solid diamonds show L = 1024 data. 
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is shown in figure 12. 
'corrections to scaling' for the simple logarithmic behaviour of C&F:,(t). 

The data for the impure case in figure 12 are described by the curve 

Small deviations from the horizontal at large t demonstrate 

y ( r )  = C(r )  - 0.21 log(l/r). (13) 

The coefficient 0.21 before log(7) in this formula was chosen to make the y(r)-curve 
horizontal near r = 0.01. We see that deviations from the pure logarithmic behaviour are 
larger in the impure case. For this reason we may try to approximate C(r )  by (2).  It is 
natural to try to choose the proportionality coefficient in such a way that for g + 0 this 
formula becomes the pure king formula. Then C ( r )  must be chosen as 

0.4945 
g 

C(T)  = - log(1 + g log(l/s)) +constant 

where g and the constant are parameters to be found from comparison with the simulation 
data. 

Figure 13 shows 

(15) 

Here g = 0.295 was chosen to make the curve as close to horizontal as possible in the 
critical region z 0.003. Comparison with the pure case curve on the same figure, figure 
13 shows that 'corrections to scaling' for the DD formula (14) are of approximately the same 
value as in the pure case. The choice of g = 0.295 is justified by figure 14, which shows 
1000-sample data for L = 1024 in the critical region. Figure 14 gives the curves z ( r )  for 
three different values of g : 0.31, 0.295, 0.28. We see that the~DD formula (14) describes 
the impure case specific heat reasonably well . 

0.4945 
0.295 

z(t) = C ( s )  - - log(l+ 0.295log(l/r))+0.6. 
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Figure 11. The specific heat per node C ( r )  for the L = 1024 impure system (up triangles), 
L = 512 impure system (empty boxes), and infinite pure lsing system (broken line). 
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Figure 12. The difference y ( r )  between C(r)  and the best logarithmic approximation for it. 
Pure case ypurc(r) is shown by the broken line. Up triangles show L = 1024 impure data: 
empty boxes show L = 512 impure data.. 
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Figure 13. The difference L ( T )  between C(r )  and the DD approximation for g = 0.295. Up 
triangles show L = 1024 data; empty boxes show L = 512 data. The broken line shows infinite 
pure system C(r)-deviations from the simple log(r)-law. This deviations are caused by analytic 
correaions to scaling. The decrease of Z(T) for T c 2 x is caused by finite-lattice effects. 
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F i y r e  14. For 1000 samples, L = 1024. the &tical redon difference Z(T) between C(r) and 
the DD approximation for g = 0.28 (down Uiangles), 0.295 (diamonds), 0.31 (up triangles). 

5. Conclusions 

Two alternative interpretations are compatible with our simulation results. 
The first point of view is that the corrections to scaling (IO) are really large, and the 

true asymptotic behaviour is defined by DD-SSL theory. This means that the specific heat 
diverges as a double logarithm o f t ,  while M ( t )  and x(t)  are described by (8). (9). 

The second point of view is that corrections to the scaling are negligible in the 
critical region (7). Then the magnetization critical exponent @ and magnetic susceptibility 
critical exponent y are increased by impurity. In this case the standard scaling relation 
CY + 28 + y = 2 implies that the specific heat exponent (Y becomes negative. In our case the 
increase of y is about 0.135, and the increase of @ is about 0.0075. Therefore 01 -0.15, 
It turns out that the DD formula (14) with g = 0.295 gives practically the same results for 
C(t) as the power law with (Y = -0.15. 

Because both contradicting interpretations agree with the simulation data, we cannot 
completely support the recent claim [40] that the site dilution of the 2D king model leads to 
increased value of y .  We belive that the problem can be completely resolved by simulations 
on much larger lattices, which will avoid the influence of analytic corrections to scaling. 
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